
TT-VT3000A-TS

Crystal Oscillator

FEATURES: Stratum III Ceramic Package

(1.9)

(1.2)

TT-VT3000A-TS
Package

0.200

GND (TCXO)

(1.4)

0.059

(4.2)

CMOS and Clipped Sine 7.0 x 5.0 x 1.9 mm

Parameter	Unit	Min.	Max.
Frequency Range	MHz	5	26
Frequency Tolerance (Overall, 20 Years)	ppm	-	±4.6
Frequency Stability			
Holdover	ppm	-	±0.5
Storage Temperature Range	°C	-55	+125
Current Consumption (CMOS)	mA	-	6
Current Consumption (Clipped Sine)	mA	-	3.5
Load (CMOS)	pF	15	
Load (Clipped Sine)		10 KOhms//10pF	
Output Level (CMOS)	V	90%	10%
Output Level (Clipped Sine)	V p-p	0.8	-
Duty Cycle (CMOS only)	%	45/55	
Voltage		3.3, 5.0 ±5%	
Output Level	Vp-p	0.8	-
Load		10KOhms//10pF	
Control Voltage Range (VCTCXO)	V	See Table	
Frequency Deviation (VCTCXO)	ppm	±5	±10
VC Input Impedance (VCTCXO)	KOhms	100	-
Start-up Time	mSec	-	2
Phase Noise			
@ 1 kHz	dBc/Hz	-145 typical	

Overall Stability including frequency tolerance @ 25° C. vs. supply voltage, vs. load, reflow soldering, 20 years of aging, and frequency stability over temperature range. Holdover Stability including 24 hours of aging, vs. supply voltage, and frequency stability over temperature range.

Recommended Solder Pattern Environmental

0.200

Terminal Material	W
Terminal Plating	Ni-Au
REACH Compliant	Yes
RoHS Compliant	Yes
RoHS Exemptions	No
Re-flow Temp. Max.	260°C
MSL	1

Frequency Stability vs. Temperature Range

	• •	
Temperature	Stability (ppm)	
-10 to 60°C	$\pm 0.14, \pm 0.2, \pm 0.28, \pm 0.5$	
-20 to 70°C	$\pm 0.14, \pm 0.2, \pm 0.28, \pm 0.5$	
-40 to 85°C	±0.28, ±0.5	

Example Part Number: VT3000A-TS-A-18-A-27-24M576 VT3000A-TS 2 5 **Stability Pull Range** Temp. Range **Frequency** Voltage 30 = 3.0 V $16 = -10 \text{ to } 60^{\circ}\text{C}$ $A = \pm 0.5$ $A = \pm 10$ Frequency in MHz $B = \pm 0.28$ 25 = 2.5 V $27 = -20 \text{ to } 70^{\circ}\text{C}$ i.e. 24M576 $B = \pm 8$ $C = \pm 0.2$ 18 = 1.8V $C = \pm 5$ $48 = -40 \text{ to } 85^{\circ}\text{C}$ use M for decimal $D = \pm 0.14$ T= TCXO point